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We report on precise measurements of magnetic field gradients extracted from transverse relax-
ation rates of precessing spin samples. The experimental approach is based on the free precession
of gaseous, nuclear spin polarized >He and !?°Xe atoms in a spherical cell inside a magnetic guid-
ing field of about 400 nT using LT¢ SQUIDs as low-noise magnetic flux detectors. The transverse
relaxation rates of both spin species are simultaneously monitored as magnetic field gradients are
varied. For transverse relaxation times reaching 100 h, the residual longitudinal field gradient across
the spin sample could be deduced to be|VB;| = (5.6 £0.4) pT/cm. The method takes advantage of
the high signal-to-noise ratio with which the decaying spin precession signal can be monitored that
finally leads to the exceptional accuracy to determine magnetic field gradients at the sub pT/cm

scale.

Introduction

3He magnetometers based on free spin precession provide
ultra-sensitive measurements and monitoring of magnetic
fields as demonstrated recently in [IH3]. For the readout
of the spin precession signal one can use several sensors
like low- or high-T+ SQUID gradiometers, Rb or Cs gra-
diometers or standard NMR techniques. At low magnetic
fields (By < 50 pT) it is advantageous to use SQUIDs or
alkali-magnetometers to record the free spin precession
since they directly measure the temporal change of the
3He magnetization M (t). At magnetic fields exceeding
0.1 T, NMR detection techniques are clearly preferable
because they detect the induced field of the precessing
sample magnetization being proportional to dM/dt, i.e.,
the recorded signal scales with the Larmor frequency and
thus with the magnetic field strength.

Optical pumping is the technique used to hyperpolarize
diluted noble gases for sufficient signal enhancement re-
sulting in a high Signal-to-Noise Ratio (SNR). Whereas
metastability optical pumping (MEOP) [4, [5] is used to
hyperpolarize the He nuclear spins along the axis of the
respective magnetic field By (z-axis), the second spin
species for our comagnetometry studies, 12?Xe, is spin-
polarized by spin exchange optical pumping (SEOP) [6].
Then the nuclear spins are tipped synchronously out of
axis towards the transverse x-y plane by applying a short,
resonant radio frequency pulse, or by non-adiabatic spin
flipping. Subsequently, the free, coherent precession of
the nuclear magnetic moments around the field direction
with the Larmor frequency

wr =7-Bop (1)
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is detected. The proportionality constant - is called the
gyromagnetic ratio and is a property of the respective
nucleus (yge = —27 - 32.43409966(43) MHz/T [1]).

The presence of a magnetic field gradient in a sample
cell containing spin-polarized noble gases will increase the
transverse relaxation rate. The origin of this relaxation
mechanism is the loss of phase coherence of the atoms
due to the fluctuating magnetic field seen by the atoms
as they diffuse throughout the cell. In the motionally nar-
rowing regime, where the gas atoms diffuse throughout
the entire sample cell (spherical cell of radius R) in a rel-
atively short time 7p ~ R?/D < 1/(yAB), the perturb-
ing influence of the field inhomogeneity AB ~ R - |V B|
on the spin coherence time T35 is strongly suppressed.
Analytical expressions can be derived for the transverse
relaxation rate for spherical sample cells, as reported in
[8]. Subsuming the relaxation time at the walls, T a1,
and other spin-relaxation modes under the longitudinal
relaxation time 77, the general expression for the trans-
verse relaxation rate 1/75 for a spherical sample cell of
radius R is
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Here, D is the diffusion coefficient of the gas and =z,
(n =1,2,3,...) are the zeros of the derivative-Lj; () = 0
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of the spherical Bessel function jj(z). The deviation
B’(r) of the local field from the average homogeneous
field By was approximated by the uniform gradient field
B'(r) = G - r, with G being a traceless, symmetric
second-rank tensor.

Eq. above suggests measurements at low gas pressures
(D x 1/p) and at small sample sizes (T5 o R~*). How-
ever lowering both gas pressure and size reduces SNR
and thus the measurement sensitivity. As shown in [IJ,
optimum conditions are met at gas pressures of a few
mbar and sample sizes of several cm. In such a way it
is possible to obtain characteristic times of coherent spin
precession of up to 100 h in homogeneous magnetic fields
below 1 uT using almost relaxation free sample contain-
ers with 77 > 100 h. Even at high magnetic fields (above
0.1 T), T5 of several minutes has been measured [3].
Besides ultra-precise monitoring of magnetic fields rang-
ing from nT < By < 10 T, the detection of the free spin
precession also provides direct access to magnetic field
gradients via the measurement of the exponential decay
of the recorded signal amplitude S o« exp(—t/T5). This
option has not been systematically followed in the past
because the focus was primarily laid on the exploration
of precise measurement and monitoring of the magnetic
field modulus extracted from the measured Larmor fre-
quency (Eq. ) With T3 as an additional observable,
access to all nine tensor elements is possible, however,
only five are independent as a result of Maxwell’s equa-
tions in free space. By inspection of Eq. it is clear
that by varying the parameter A, e.g., by changing the
gas pressure p, the relative contribution of the transversal
field gradients |V B,| and |VB,| to T5 can be adjusted.
The weighing can be inferred from Fig. 1, where the pre-
factor a(\) from Eq. is plotted as a function of A.
Accurate determination of magnetic field gradients, in
particular the transverse gradient components, is a chal-
lenging metrological task: sensor offsets and their tem-
poral drifts, non-orthogonality of the sensor axes and
misalignment angles as result from imperfections of the
mechanical design of the mapper often severely limit
the measurement accuracy. To motivate the need for an
accurate and precise control of field gradients: At cur-
rent and anticipated levels of sensitivity in electric dipole
moment (EDM) measurements, geometric-phase-induced
false EDM signals, resulting from interference between
magnetic field gradients and particle motion in electric
fields, are an important potential source of systematic er-
rors [9]. Precise and accurate gradient measurements of
order pT/cm are demanded to correct directly for these
false-EDM signals in the future [10].

Here, we report on a first field gradient measurement via
recorded Ty-times using a 3He-2Xe co-magnetometer.
A co-located 3He and '??Xe spin sample is used to verify,
in the practical implementation, the validity of the an-
alytical expression for 735 given in Eq. . This serves
as a solid basis to finally extract precise numbers for
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FIG. 1. The pre-factor a of Egs. (2) and (3) as a function
of A\. By varying the parameter \, e.g., by changing the gas
pressure p, the relative contribution of the transversal field
gradients |V B;| and |V By| to T5 can be adjusted.

field tensor components from 7% measurements. With the
chosen gas pressures and magnetic field (By = 400 nT)
we meet the situation a(\) = 0. Then the longitudinal
field gradient component |V B,| across the sample vol-
ume (V = 456 cm?) can be extracted from the measured
Ty-times for different settings of the applied magnetic
field.

Experimental setup and procedure

The experimental setup was described in detail in [T}, 1T}
12]. Briefly, the basic setup consists of the low-relaxation
spherical measurement cell (R = 4.8 c¢m) filled with a gas
mixture of polarized *He (pge = 3.4 mbar), polarized Xe
(85% 129Xe, pxe = 4.9 mbar) and Ny (py, = 24.5 mbar)
as a buffer gas. The sample cell is brought into a 7-layered
magnetically shielded room (BMSR-2, [I3]) and placed
directly below the Dewar housing the LT¢- SQUID vec-
tor magnetometer system. This system detects a sinu-
soidal magnetic field change due to the spin precession
of the gas atoms. After degaussing, the residual mag-
netic field of the BMSR-2 is estimated to be about 1 nT.
Two square Helmholtz coil pairs arranged perpendicular
to each other with adjustable current sources (resolution:
100 nA, noise density: 82 pA/v/Hz, stability 10~*) gen-
erate a magnetic guiding field of |Bg| = 403 nT. The
guiding field - and with it the quantization axis z - can
be oriented in any direction « in the horizontal plane
keeping By constant to a level of 1 nT. The coil system
also serves to manipulate the sample spins, e.g., generat-
ing a /2 spin-flip by non-adiabatic switching. The mag-
netic field gradients are varied by turning the guiding
field inside the magentically shielded room. There are
two main sources of gradients: Residual field gradients
from the mu-metal shielding and gradients produced by
the Helmholtz coils. The latter ones will change, as the
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FIG. 2. The transverse relaxation times of helium and xenon
as a function of the direction « of the magnetic guiding field in
the horizontal plane, applied in steps of Aa = 45° for 5 turns.
In total, the measurement took about 20 hours with ~30 min
for each field setting to extract T5 from the exponential decay
of the signal amplitude. Solid line: Fit of a Fourier series to
the measured relaxation rates 1/75 to guide the eye. From the
transverse relaxation times, the respective magnetic field gra-
dients can be extracted according to Eq. . For the given
experimental parameters, the corresponding range of the lon-
gitudinal field gradient |V B.| is shown on the right hand side
of the T3z, plot.

magnetic guiding field is rotated. The resulting gradients
are the sum of the two above. In the chosen experimental
procedure, the magnetic guiding field is rotated slowly for
a certain amount Aa = 45° in 5 minutes and then stays
constant for 25 minutes. In that phase of operation, the
SQUID system detects the field of the precessing mag-
netization of the polarized gases. By exponential fits to
the decaying He and Xe amplitudes, T3 5, and T3 v are
determined for different values of &« = n - Aa, where we
set o = 0 for the guiding magnetic field pointing parallel
to the entrance door wall.

Results

The transverse relaxation times for 3He and '2?Xe are
shown in Fig. [2] They depend strongly on the direction of

the magnetic guiding field « and vary between 20 h and
100 h for Helium, and between 6 h and 8.5 h for Xenon.
The characteristic pattern in Fig. [2] repeats itself after
every revolution. At some angle «, the gradients from
the chamber and coils almost cancel each other and T3
is maximized. At other angles the cancellation is less dis-
tinct with a minimum in 7% at a field orientation where
the gradients add up constructively. This is consistent
with the observation that the rotation of the magnetic
guiding field by 180° changes the transverse relaxation
time from the global maximum to the global minimum.

The precision in extracting the transverse spin relaxation
times is a few percent, and this despite the fact that
we only see a relatively weak decay of the signal ampli-
tude AS/S = —At/Ty ~ —4-1072 (linear term of the
exponential decay) during the data acquisition time of
At = 25 min in case of T3 approaching 100 h. The rea-
son for this high detection sensitivity is the excellent SNR
of 4000:1 in a bandwidth of 1 Hz, resulting in a precision
of amplitude determination of 6S/S =~ 7-107° after this
relatively short acquisition time. Drifts of the transverse
relaxation time of ATy /At > 1 min / 30 min caused
by temporal changes of the field gradients will result in
an increased x2-value of the exponential fit to the data.
This consequence was not observed, and indeed former
measurements using coherent spin precession which mon-
itored the decaying signal amplitude over extended peri-
ods of At = T5 confirmed this finding by ATy < 160 s
[14].

In the expressions of Eq. , the term including the gra-
dients can be eliminated in case of simultaneous mea-
surements of the relaxation rates 1/T5 5, and 1/T5 y,
leading to:

1 1
— =k+m— (5)
T2,He T2,Xe
with
1 1
]{j = — 6
T He T xe (©)
and
2
’YHeDXE
m = —— . 7
7§(€DHe ( )

Fig. ] shows the measured pairs of relaxation rates that
clearly follow a straight line with slope m and intercept
k. A straight line fit to the data finally gives

m = 1.049 £+ 0.009 (8)

k= (—0.116 £0.0013) h ™' . (9)

In order to confirm the validity of Eq. (2) one can com-
pare the fit results with the corresponding values of m
and k determined from independently measured quanti-
ties that enter on the right hand side of Egs. @ and .
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FIG. 3. Corresponding pairs of helium and xenon relaxation
rates as magnetic field gradients are varied. Each point repre-
sents one pair of simultaneously measured helium and xenon
relaxation rates. Solid line: straight line fit to the data ac-

cording to Eq. .

For the ratio of the diffusion constants using the fit result

(Eqgs. (8) and (9)) and the precisely known ratio of the
gyromagnetic ratios 1= = 2.75408159(20) [15], we get:

D 2
He _ THe _ 7934007 . (10)

2
Dx. mvx,

In a gas mixture with Ny as buffer gas, the resulting
diffusion coefficients for 3He and 29Xe are given by [25]:

1 PHe PXe PN,
= He + (11)
DHe DIqu D%einXe DIQIeinNz
1 PXe PHe PN,
= X g + (12)
‘DXC ‘Dg(e Dg)(e in He D)O(e in Ny

with the diffusion coefficients of pure He and Xe:
DY, = (192 £ 0.11) barcm®s [I6] and DY, =
(0.058 =+ 0.003) bar cm?s [I7], as well as the bi-
nary diffusion coefficients of the noble gas mixtures:
DY i xe = (0.610 £ 0.031) bar em?s [I7], DY, i\ N, =
(0.771 4 0.039) bar cm®s [I7], DY, ;e = (0.548 +
0.023) bar em®s [[7121], and D%, N, = (0.128 +
0.004) bar cm®s [19, 22] (all values for T' = 300 K). In-
serting these values into Eq. results in the ratio of
diffusion coefficients

Dye  (24.03 4 0.96)
= — 0. :I: . . 1
Dxc  (3.55+0.10) 0.77£0.33 (13)

Within the error bars, this reproduces the fit result of
Eq. .

Furthermore, T x. can be determined using the fit re-
sults for k£ and m, and T1 g = (190 £ 10) h, which was
also measured independently:

m
Tl,Xe = 17]{

T1, He

=(8.65+0.12) h .  (14)

4

The longitudinal relaxation rate 1/77 x. can be decom-
posed according to 1/T7 xe = 1/T1 wan+1/T1 vaw- These
terms in turn can be determined from independent mea-
surements published in [23] [24], where the same sample
cell was used. For the wall relaxation times of 12°Xe, val-
ues between 17 h < T wan < 20 h were found which to-
gether with the expected relaxation time via Xe-Xe van
der Waals (vdW) dimers,

Tt vaw = T <1 + N, izz) =(152+1.2)h ,

(15)

confirm the result of Eq. (14)). The overall excellent agree-
ment not only constitutes the direct experimental veri-
fication of Eq. 7 it also paves the way to use the free
spin precession technique in order to determine very ac-
curately magnetic field gradients from the measured 75
From the given diffusion coefficients of both noble gases
in Eq. , we derive the respective numbers for the
parameter A from Eq. , ie, Age ~ 1.7-107%* and
Axe ~ 2.8-1075. For those values of A the corresponding
pre-factor a(A) is essentially zero (see Fig. . So Eq. (2)
is reduced to
1 1 8Ry?

— = VB, |? 16
T3 T1+175D| | (16)

from which the respective modulus of the field gradient
value |V B.| can be derived. In case of *He we find for
T3 = 100 h, which is about the value of the maximized
transverse relaxation time (see Fig.2):

|[VB.| = (5.6 +£0.4) pT/cm . (17)

The uncertainty is essentially determined by the uncer-
tainties of Dy, and the longitudinal relaxation time 77.
In Fig. 2] the extracted field gradient values from the
measured transverse relaxation times Tj of *He are dis-
played, too. These values vary in the range 5.6 pT/cm <
|[VB.| < 17 pT/cm as the guiding magnetic field is ro-
tated in the horizontal plane with respect to the resid-
ual field of BMSR-2. The sensitivity to field gradient
changes (monitoring) is solely determined by the accu-
racy with which T35 can be measured. In the example
given, 6|V B, | ~ 30 fT/cm. For higher magnetic field gra-
dients, T5 reduces accordingly. Given the same SNR, the
data acquisition time to reach the same precision in T4
determination is proportional to (T2*)2/ ®. Thus, the re-
sponse time to field gradient changes is greatly reduced.
Discussion and Outlook

We have demonstrated that hyperpolarized noble gas
magnetometers based on the detection of free spin pre-
cession can be simultaneously used to detect magnetic
field gradients with an accuracy in the sub pT/cm range.
The observable is the transverse relaxation rate deduced
from the exponential decay of the signal amplitude which
directly depends on the square of absolute field gradient



values across the spherical spin sample. Due to the exper-
imental setup and the performance of the measurements,
we only had access to the longitudinal components |V B, |
of the field gradient tensor. By specific settings of the
weighting factor a()) in Eq. , e.g., by changing the
gas pressure, access to the transverse field gradient com-
ponents is given with similar precision. Using pure >He
gas at pge = 1 mbar, e. g., the value of the pre-factor
a(\) approaches 0.5 for the same size of the sample cell.
The method can be further refined by using appropriate
field gradient coils around the position of the spherical
spin sample. From the known coil geometries and applied
coil currents, well defined magnetic field gradients can be
added to the residual and unknown field gradients at the
sample position. Five linear independent sets of gradi-
ent coils are sufficient to determine the full tensor via
T5-measurements. In a forthcoming paper this measure
to determine the traceless, symmetric second-rank field
gradient tensor G will be discussed.
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